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Research Note

A Variational Iteration Method for Solving
Systems of Partial Di�erential Equations

and for Numerical Simulation of the
Reaction-Di�usion Brusselator Model

Y. Jalilian1

In this work, systems of linear and nonlinear partial di�erential equations and the reaction-
di�usion Brusselator model are handled by applying the variational iteration method. The
Variational iteration method has the advantage of being more concise for analytical and numerical
purposes. The results reveal that the method is very e�ective and convenient.

INTRODUCTION

Systems of partial di�erential equations have attracted
much attention in studying evolution equations de-
scribing wave propagation [1-3], in investigating shal-
low water waves [1-3] and in examining the chemical
reaction-di�usion model of a Brusselator [4-6]. The
general idea of these systems is of wide applicabil-
ity. In [1-3], the characteristics method and the
Riemann invariants method are used to handle sys-
tems of partial di�erential equations. These meth-
ods contain a large size of computation, especially
when the system involves several partial di�erential
equations. In [5], a method, based on a combination
of the waveform relaxation method and multigrid,
was implemented to solve nonlinear systems. The
Brusselator model is solved with the periodic multigrid
waveform relaxation method [5], using �ve multigrid
levels. Parallel processors were used to carry out
the large size of calculations. Recently, some new
methods, di�ering from the above methods for non-
linear equations, have attracted broad attention, for
example; the variational iteration method [7-14], the
homotopy perturbation method [15-18] and the F-
expansion method [19-22]. This paper applies the
variational iteration method to the discussed prob-
lem.
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VARIATIONAL ITERATION METHOD

To illustrate the basic concepts of the variational
iteration method, the following system of di�erential
equations is considered:

L1u(x; t) +N1(u(x; t); v(x; t)) = f(x; t);

L2v(x; t) +N2(u(x; t); v(x; t)) = g(x; t); (1)

where L1 and L2 are linear di�erential operators, with
respect to time; N1 and N2 are nonlinear operators and
f(x; t) and g(x; t) are given functions. According to the
variational iteration method, a correction functionals
can be constructed as follows [7-10,23,24]:

un+1(x; t) = un(x; t) +
Z t

0
�1(�)fL1un(x; �)

+N1(eun(x; �); evn(x; �))� f(x; �)gd�; (2)

vn+1(x; t) = vn(x; t) +
Z t

0
�2(�)fL2un(x; �)

+N2(eun(x; �); evn(x; �))� g(x; �)gd�; (3)

where �1 and �2 are general Lagrange multipliers,
which can be identi�ed, optimally, via a variational
theory [25-28]. The second term on the right-hand
side in Equations 2 and 3 is called the correction and
the subscript, n, denotes the nth order approximation.
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Under suitable restricted variational assumptions (i.e.eun and evn are considered as a restricted variation), one
can assume that the above correction functionals are
stationary (i.e. �un+1 = 0 and �vn+1 = 0), then, the
Lagrange multipliers can be identi�ed.

APPLICATION

First, one starts with systems of linear partial di�eren-
tial equations.

Linear Partial Di�erential Systems

Example 1
First, the linear system:

ut + vx = 0; vt + ux = 0; (4)

is considered with the initial data:

u(x; 0) = ex; v(x; 0) = e�x: (5)

To apply the variational iteration method, the following
correction functionals are constructed:

un+1(x; t) = un(x; t) +
Z t

0
�1(�)f(un)� + (evn)xgd�;

(6)

vn+1(x; t) = vn(x; t) +
Z t

0
�2(�)f(vn)� + (eun)xgd�;

(7)

where �1 and �2 are Lagrange multipliers and eun andevn denote the restricted variations (i.e. �eun = �evn =
0). Making the above correction functionals stationary
to �nd the optimal value of �1 and �2;

�un+1(x; t)=�un(x; t)+�
Z t

0
�1(�)f(un)�+(evn)xgd�;

(8)

�vn+1(x; t)=�vn(x; t)+�
Z t

0
�2(�)f(vn)�+(eun)xgd�;

(9)

yields the following stationary conditions:

1 + �1(�) j�=t= 0; �01(�) = 0; (10)

1 + �2(�) j�=t= 0; �02(�) = 0: (11)

Therefore, the Lagrange multipliers can be de�ned as
follows:

�1 = �1; �2 = �1:

And, one gets the following iterations:

un+1(x; t) = un(x; t)�
Z t

0
f(un)� + (vn)xgd�; (12)

vn+1(x; t) = vn(x; t)�
Z t

0
f(vn)� + (un)xgd�: (13)

Starting with the initial approximations u0(x; t) =
u(x; 0) and v0(x; t) = v(x; 0), and by Equations 12 and
13, one will have:

u1 = ex + e�xt;

v1 = e�x � ext;

u2 = ex
�

1 +
t2

2!

�
+ e�xt;

v2 = e�x
�

1 +
t2

2!

�
� ext;

u3 = ex
�

1 +
t2

2!

�
+ e�x

�
t+

t3

3!

�
;

v3 = e�x
�

1 +
t2

2!

�
� ex

�
t+

t3

3!

�
;

u4 = ex
�

1 +
t2

2!
+
t4

4!

�
+ e�x

�
t+

t3

3!

�
;

v4 = e�x
�

1 +
t2

2!
+
t4

4!

�
� ex

�
t+

t3

3!

�
; (14)

and so on. Using Equations 12 and 13, one obtains:

u(x; t) = ex
�

1 +
t2

2!
+
t4

4!
+ � � �

�
+ e�x

�
t+

t3

3!
+
t5

5!
+ � � �

�
;

v(x; t) = e�x
�

1 +
t2

2!
+
t4

4!
+ � � �

�
� ex

�
t+

t3

3!
+
t5

5!
+ � � �

�
; (15)

which has an exact analytical solution of the form:

u(x; t) = ex cosh(t) + e�x sinh(t);

v(x; t) = e�x cosh(t)� ex sinh(t); (16)

or, equivalently,

u(x; t) = cosh(x� t) + sinh(x� t);
v(x; t) = cosh(x� t)� sinh(x� t): (17)
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Example 2
Consider the linear system of partial di�erential equa-
tions:

ut + ux � 2v = 0; vt + vx + 2u = 0; (18)

with the initial data:

u(x; 0) = sin(x); v(x; 0) = cos(x): (19)

In the same manner, for the system of partial di�eren-
tial equations (Equations 18), one obtains �1 = �2 =
�1. Therefore, the following iterations are obtained:

un+1(x; t) = un(x; t)�
Z t

0
f(un)� + (un)x � 2vgd�;

vn+1(x; t) = vn(x; t)�
Z t

0
f(vn)� + (vn)x + 2ugd�:

(20)

By setting u0 = u(x; 0) and v0 = v(x; 0) and by
Equations 20, one will have:

u1 = sin(x) + cos(x)t;

v1 = cos(x)� sin(x)t;

u2 = sin(x)
�

1� t2

2!

�
+ cos(x)t;

v2 = cos(x)
�

1� t2

2!

�
� sin(x)t;

u3 = sin(x)
�

1� t2

2!

�
+ cos(x)

�
t� t3

3!

�
;

v3 = cos(x)
�

1� t2

2!

�
� sin(x)

�
t� t3

3!

�
;

u4 = sin(x)
�

1� t2

2!
+
t4

4!

�
+ cos(x)

�
t� t3

3!

�
;

v4 = cos(x)
�

1� t2

2!
+
t4

4!

�
� sin(x)

�
t� t3

3!

�
: (21)

Combining the results obtained above gives the follow-
ing:

u(x; t) = sin(x)
�

1� t2

2!
+
t4

4!
+ � � �

�
+ cos(x)

�
t� t3

3!
+
t5

5!
+ � � �

�
;

v(x; t) = cos(x)
�

1� t2

2!
+
t4

4!
+ � � �

�
� sin(x)

�
t� t3

3!
+
t5

5!
+ � � �

�
; (22)

so that u and v are known in a closed form by the
following:

u(x; t) = sin(x+ t); v(x; t) = cos(x+ t): (23)

In the following example, a system of three nonlin-
ear partial di�erential equations in three unknown
functions, u(x; y; t), v(x; y; t) and w(x; y; t), will be
investigated.

Nonlinear Partial Di�erential System

Example 3
Consider the following nonlinear system:

ut + vxwy � vywx + u = 0;

vt + wxuy + wyux � v = 0;

wt + uxvy + uyvx � w = 0; (24)

with the initial conditions:

u(x; y; 0) = ex+y;

v(x; y; 0) = ex�y;

w(x; y; 0) = ey�x: (25)

To apply the variational iteration method, the following
correction is constructed:

un+1(x; y; t) = un(x; y; t)

+
Z t

0
�1(�)fun� + evnx ewny � ewnxevny + eungd�;

(26)

vn+1(x; y; t) = vn(x; y; t)

+
Z t

0
�2(�)fvn� + ewnxeuny + eunx ewny � evngd�;

(27)

wn+1(x; y; t) = wn(x; y; t)

+
Z t

0
�3(�)fwn� + eunxevny + eunyevnx � ewngd�;

(28)

where �1, �2 and �3 are Lagrange multipliers andeun, evn and ewn denote the restricted variations (i.e.
�eun = �evn = � ewn = 0). Making the above correction
functionals stationary to �nd the optimal value of �1,
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�2 and �3, the followings

�un+1(x; y; t) = �un(x; y; t)

+ �
Z t

0
�1(�)fun� + evnx ewny � ewnxevny + eungd�;

(29)

�vn+1(x; y; t) = �vn(x; y; t)

+ �
Z t

0
�2(�)fvn� + ewnxeuny + eunx ewny � evngd�;

(30)

�wn+1(x; y; t) = �wn(x; y; t)

+ �
Z t

0
�3(�)fwn� + eunxevny + eunyevnx � ewngd�;

(31)

yield the following stationary conditions:

1 + �1(�) j�=t= 0; �01(�) = 0; (32)

1 + �2(�) j�=t= 0; �02(�) = 0; (33)

1 + �3(�) j�=t= 0; �03(�) = 0: (34)

Therefore, the Lagrange multipliers can be de�ned in
the following forms:

�1 = �1; �2 = �1; �3 = �1:

And one gets the following iterations:

un+1(x; y; t) = un(x; y; t)

�
Z t

0
fun� + vnxwny � wnxvny + ungd�; (35)

vn+1(x; y; t) = vn(x; y; t)

�
Z t

0
fvn� + wnxuny + unxwny � vngd�; (36)

wn+1(x; y; t) = wn(x; y; t)

�
Z t

0
fwn� + unxvny + unyvnx � wngd�: (37)

By setting u0 = u(x; y; 0), v0 = v(x; y; 0) and w0 =
w(x; y; 0), one obtains:

u1 = ex+y(1� t);
v1 = ex�y(1 + t);

w1 = ey�x(1 + t); (38)

u2 = ex+y
�

1� t+
t2

2!

�
;

v2 = ex�y
�

1 + t+
t2

2!

�
;

w2 = ey�x
�

1 + t+
t2

2!

�
; (39)

u3 = ex+y
�

1� t+
t2

2!
� t3

3!

�
;

v3 = ex�y
�

1 + t+
t2

2!
+
t3

3!

�
;

w3 = ey�x
�

1 + t+
t2

2!
+
t3

3!

�
: (40)

Continuing in this manner, one can �nd:

un=ex+y
�

1�t+ t2

2!
� t3

3!
+
t4

4!
+� � �+(�1)n

tn

n!

�
;

vn = ex�y
�

1 + t+
t2

2!
+
t3

3!
+
t4

4!
+ � � �+ tn

n!

�
;

wn = ey�x
�

1 + t+
t2

2!
+
t3

3!
+
t4

4!
+ � � �+ tn

n!

�
: (41)

The sequences in Equations 41 converge the following
exact solutions:

u(x; y; t) = ex+y�t;

v(x; y; t) = ex�y+t;

w(x; y; t) = ey�x+t: (42)

REACTION-DIFFUSION BRUSSELATOR
MODEL

In this section, the reaction-di�usion Brusselator model
is considered [5,6], which models a chemical reaction
di�usion process. The two-dimensional Brusselator
model [29] is as follows:

ut � u2v + (A+ 1)u� 1
500

(uxx + uyy)�B = 0;

vt + u2v �Au� 1
500

(uxx + uyy) = 0; (43)
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with initial data:

u(x; y; 0) = 2 +
1
4
y; v(x; y; 0) = 1 +

4
5
x; (44)

where u(x; y; t) and v(x; y; t) denote chemical concen-
trations [5] of intermediate reaction products and A
and B are constant concentrations of input reagents
where:

A =
17
5
; B = 1: (45)

One can construct the following correction functionals:

un+1(x; y; t) = un(x; y; t) +
Z t

0
�1(�)fun� � (eun)2evn

+
�

1 +
17
5

� eun � 1
500

(eunxx + eunyy)� 1gd�;
(46)

vn+1(x; y; t) = vn(x; y; t) +
Z t

0
�1(�)fvn� + (eun)2evn

� 17
5
eun � 1

500
(eunxx + eunyy)gd�; (47)

where �1 and �2 are Lagrange multipliers and eun andevn are restricted variations. The Lagrange multipliers
can be identi�ed as �1 = �1 and �2 = �1 and, there-
fore, the following iteration formulae can be obtained:

un+1(x; y; t) = un(x; y; t)�
Z t

0
fun� � (un)2vn

+
�

1 +
17
5

�
un � 1

500
(unxx + unyy)� 1gd�;

(48)

vn+1(x; y; t) = vn(x; y; t)�
Z t

0
fvn� + (un)2vn

� 17
5
un � 1

500
(unxx + unyy)gd�: (49)

Starting with initial approximations, u0(x; t) = u(x; 0)
and v0(x; t) = v(x; 0), and by Equations 48 and 49, one
will have:

u1 =2+
y
4
�
�

39
5
��2 +

y
4

�2
�

1+
4
5
x
�

+
11
10
y
�
t;

(50)

v1 =1+
4
5
x�
�
�34

5
+
�

2 +
y
4

�2
�

1+
4
5
x
�
� 17

20
y
�
t;
(51)

u2 =

(
1
4

�
�39

5
+
�

2 +
y
4

�2
�

1 +
4
5
x
�
� 11

10
y
�2

�
�

34
5
� �2 +

y
4

�2
�

1 +
4
5
x
�

+
17
20
y
�)

t4

+

(
2
3

�
2+

y
4

���39
5

+
�

2+
y
4

�2
�

1+
4
5
x
�
� 11

10
y
�

�
�

34
5
��2 +

y
4

�2
�

1 +
4
5
x
�

+
17
20
y
�

+
1
3

 
�39

5

+
�

2 +
y
4

�2
�

1 +
4
5
x
�
� 11

10
y

!2�
1 +

4
5
x
�)

t3

+

(
137281
8000

+
1

10000
x+

1
2

�
2 +

y
4

�2
 

34
5

� �2 +
y
4

�2
�

1 +
4
5
x
�

+
17
20
y

!
+
�

2 +
y
4

� �39
5

+
�

2 +
y
4

�2
�

1 +
4
5
x
�
� 11

10
y

!�
1 +

4
5
x
�
� 11

5

� �2 +
y
4

�2
�

1 +
4
5
x
�

+
121
50

y

)
t2 +

(
�39

5

+
�

2 +
y
4

�2
�

1 +
4
5
x
�
� 11

10
y

)
t+ 2 +

y
4
;

(52)

v2 =

(
1
4

�
�39

5
+
�

2 +
y
4

�2
�

1 +
4
5
x
�
� 11

10
y
�2

�
�

34
5
� �2 +

y
4

�2
�

1 +
4
5
x
�

+
17
20
y
�)

t4

+

(
2
3

�
2+

y
4

���39
5

+
�

2+
y
4

�2
�

1+
4
5
x
�
� 11

10
y
�

�
�

34
5
� �2 +

y
4

�2
�

1 +
4
5
x
�

+
17
20
y
�

+
1
3

 
�39

5

+
�

2 +
y
4

�2
�

1 +
4
5
x
�
� 11

10
y

!2�
1 +

4
5
x
�)

t3

(
�106079

8000
+

1
10000

x� 1
2

�
2 +

y
4

�2
 

34
5
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� �2 +
y
4

�2
�

1 +
4
5
x
�

+
17
20
y

!
� �2 +

y
4

� �39
5

+
�

2 +
y
4

�2
�

1 +
4
5
x
�
� 11

10
y

!�
1 +

4
5
x
�

+
17
10

�
2 +

y
4

�2
�

1 +
4
5
x
�
� 187

100
y

)
t2

+

(
34
5
��2 +

y
4

�2
�

1+
4
5
x
�

+
17
20
y

)
t+1+

4
5
x:

(53)

In the same manner, the rest of the components of the
iterations (Equations 48 and 49) can be obtained using
symbolic packages, such as Maple.

In view of the authors' calculations and setting
x = 0:1 and y = 0:1, one �nds:

u3 =� 31:71038918t13 + 99:44056808t12

� 172:6703554t11 + 233:5480371t10

� 256:9512729t9 + 231:8344982t8

� 175:6385484t7 + 113:4355688t6

� 63:51254061t5 + 29:69521318t4

� 11:7846595t3 + 5:08162608t2

� 3:481325t+ 2:025; (54)

v3 =31:71038918t13 � 99:44056808t12

+ 172:6703554t11 � 233:5480371t10

+ 256:9512729t9 � 231:8344982t8

+ 175:6385484t7 � 113:4355688t6

+ 62:06380614t5 � 27:93239187t4

+ 10:10445582t3 � 3:34069358t2

+ 2:456325t+ 1:08: (55)

Figure 1 shows the approximates u3(0:1; 0:1; t) and
v3(0:1; 0:1; t) of the solutions u(x; y; t) and v(x; y; t) in
x = 0:1; y = 0:1 and 0 � t � 1.

CONCLUSION

Mathematical physics and population growth models,
characterized by systems of partial di�erential equa-
tions, such as shallow water waves, the Brusselator

Figure 1. Approximations of u(0:1; 0:1; t) and
v(0:1; 0:1; t) by u3(0:1; 0:1; t) and v3(0:1; 0:1; t),
respectively.

model, the Lotka-Volterra model and the Belousov-
Zhabotinski reduction model [30], are of wide appli-
cability. The aim of this work has been achieved
by formally deriving exact analytical solutions and
by obtaining analytical approximations with a high
degree of accuracy. In this paper, the variational
iteration method has been successfully applied to �nd
the solution of problems (Examples 1 to 3). With
attention to the e�ciency of the variational iteration
method for Example 1 to 3, this method was applied for
an analytical approximation solution of the reaction-
di�usion Brusselator model.
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